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1 PRINCIPLES BEHIND SIF FAILURE RATE EQUATIONS 

The probability of failure calculations are based on the idea of ‘fractional dead time’.  This is the 
proportion of time that a ‘channel’ will be unable to perform its function. 

MDT represents the Mean Dead Time.  We can think of 2 contributions to the dead time, 
corresponding to failures detected by continuous diagnostics, and failures that remain undetected 
until a full test or until there is a demand on the safety function. 

The dead time includes the time to detect and then to repair the failure.  The dead time for ‘detected 
failures’ that are detected by continuous automatic diagnostics is relatively short.   

The dead time for the ‘undetected failures’ is much longer.  The failures may remain undetected until 
the next proof test, so the dead time depends on the interval between proof tests. 

Undetected Failures 

Random failure occurring continuously and independently at a constant average rate can be described 
as a Poisson process.  The accumulating failures follow an exponential distribution, building up until 
eventually the entire population has failed: 

 

The initial rate of accumulation of failures is proportional to the elapsed time and the rate of failures 
(λDU).  The failure rate λDU is the reciprocal of the mean time between failures, = 1/MTBFDU. 

The number of devices failed at time t ≈ λDU.t, provided that the elapsed time t is much less than mean 
time between undetected dangerous failures (MTBFDU). 

The probability of failure is proportional to number of failures that have accumulated in the population. 
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Failures that are undetected by diagnostics accumulate in this manner as time progresses. The failed 
devices remain failed until the proof test at time T.  

 

The average number of failed devices and therefore the average probability of failure can be 
calculated as: 
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If T << MTBFDU we can use the approximation λDU(t) ≈ λDU.t 
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Strictly speaking we need to add in the mean repair time MRT to represent the time that the function 
is out of action after the failure is found at time T.  The MRT is usually measured in measured in hours 
or days, much shorter than T which is measured in years.  In practice the process is taken out of service 
during the repair or else additional risk mitigation is implemented.  The MRT is usually neglected. 

Detected Failures 

Detected failures are detected by continuous, automatic diagnostic functions.  Detected failures are 
detected and repaired within the mean time to restoration, MTTR: 
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If MTBFDD is the mean time between detected dangerous failures, and the MTTR is the mean time to 
restoration (= time to detect + time to repair), then the probability of failure is simply the fraction of 
time that the channel is out of action, MTTR/MTBFDD. 

The rate of detected dangerous failures, λDD = 1/MTBFDD., so we can express the probability as: 

𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴 = 𝜆𝜆𝐷𝐷𝐷𝐷.𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 

Overall probability of failure 

The overall probability of failure is the sum of the probabilities of failure for undetected and detected 
failures.   

It is valid approximation to simply add the probabilities because the probabilities are << 1. 
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In a low demand function the last term for detected failures is usually very small compared to the 
undetected failures, so it may usually be neglected. 

 

Probability of failure for 1oo2 voting 

In a 1oo2 architecture, the function will fail only if both channels fail, so the probability is proportional 
to the product of the probability of each channel failing,  (λDU.t).( λDU.t)   

To derive the basic equation calculating PFDAVG for a 1oo2 architectures we integrate the probability 
function over time to T, (the test interval) and divide by the time period T to get the average 
probability: 
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The probability of common cause failures should always be added to the PFD for any architecture with 
voting, as it usually dominates.   

The factor β  represents the proportion of failures that have a common cause.  β is typically in the 
range 0.02 to 0.15.  The common failures behave in the same way as a single channel, so the average 
probability of failure due to common causes is: 
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The proportion of λDU for which the channels behave as if they are independent is (1 - β).λDU  

If the MTTR is short we can neglect the contribution from detected failures again, so the equation 
becomes: 

𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴 ≈  
(1 − 𝛽𝛽).𝜆𝜆𝐷𝐷𝐷𝐷

2.  𝑇𝑇2

3
+
𝛽𝛽. 𝜆𝜆𝐷𝐷𝐷𝐷.𝑇𝑇

2
 

The equation can be simplified further by assuming that (1 - β) ≈ 1.  This is a conservative simplification 
because the PFD will be slightly higher but the increase will be negligible:  
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‘M out of N’ equations 

The method of calculating probability of failure on demand for ‘M out of N’ architecture is based on: 

Florent Brissaud, Anne Barros, Christophe Bérenguer. (2010). ‘Probability of Failure of 
Safety-Critical Systems Subject to Partial Tests. Reliability and Maintainability Symposium, 
RAMS 2010, San Jose (referenced in Cornell University Library, < arXiv:1007.5448 >). 

The simplified equation is: 
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This simplified equation neglects MRT and MTTR on the basis that they are << T and it assumes that 
(1 - β) ≈ 1 because β << 1.   

Note that the estimate of β depends on the voting.  For instance, 9 out of 10 voting is much less 
susceptible to common cause failure than 1 out of 10.  Refer to section 4 of the SINTEF PDS Method 
Handbook, Reliability Prediction Method for Safety Instrumented Systems’ (2013). 

The second term (λDU.T)N-M+1/ (N-M+2) is the average number of accumulated failures, calculated by 
the integration of the accumulated failures over time T, as demonstrated above for 1oo2. 

The term N-M+1 in the exponent is the hardware fault tolerance + 1.  It is the number of channels 
that have to fail for the function to fail, which is why it appears as the exponent for the term.  

For instance in 2oo3, N-M+1 = 3-2+1 = 2, so 2 devices failing cause the function to fail.  As the 
probability of one device failing is proportional to (λDU.t) the probability of 2 devices failing 

concurrently is (λDU.t)2.   

The factor N-M+2 in the denominator comes from integrating tN-M+1.dt to calculate the average over 
the period T.   

The first term � 𝑁𝑁
𝑁𝑁−𝑀𝑀+1� ‘N choose N-M+1’ takes into account the different combinations of the N-

M+1 faulty channels.   The PFD increases in direct proportion to the number of ways we can choose a 
combination of enough faulty channels for the SIF to fail.  1oo2 voting and 2oo3 both need 2 coincident 
failures for the function to fail, but failure is 3 x more likely with 2oo3 because there are 3 times as 
many ways of having 2 coincident failures. 

In 1oo2 voting between channel A and channel B, both A and B must fail for the function to fail. 

In 2oo3 voting, the function will fail if 2 channels are faulty and 1 remains healthy.  There are 3 possible 
choices for the 2 failed channels (A and B), (B and C) or (C and A), or the other way of thinking about 
it is that there are 3 choices for having only 1 healthy channel: A, B or C. 
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We saw above that the PFDAVG for 1oo2 voting is given by: 
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The equation for 2oo3 voting is then simply: 
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This is therefore consistent with the formula given in IEC 61508-6 and ISA S84. 

Systematic Failures 

The equations in ISA technical report ISA-TR84.00.02-2002 include a factor to quantify ‘systematic 
failures’, (λF) but strictly speaking systematic failures cannot be quantified using a constant failure 
rate.   

For instance errors in the design of a component or in the coding of software do not occur at a 
measurable rate.  The probability of systematic failures cannot be calculated.  Appropriate techniques 
and measures should be applied to avoid or to control systematic faults.  They can never be completely 
eliminated.  

In practice only electronic components are subject to purely random failure.  Virtually all failures of 
mechanical components (such as actuated valves) are systematic failures but they are treated as 
quasi-random failures.  They are caused by age or wear related deterioration.  They can’t be prevented 
and within the useful life of the equipment the expected failure rates are close enough to being 
constant.  They can be considered to be quasi random and modelled by a constant failure rate.   

The failure rate statistics that are provided by OREDA and exida include systematic failures.   

There is no need to add the separate term λF but it is good practice to include a safety margin over 
our calculated PFD.  There is no rule defining how much margin is needed.  A factor of 2 or 3 might be 
enough. 

We need to consider the feasibility of maintaining that rate during the life of the plant, allowing for 
deterioration and for problems in maintenance (such as lack of accessibility for testing, lack of 
opportunity for maintenance). So if you calculate a RRF of 1007 will you be confident in claiming SIL 3 
is achieved? No, maybe not, because it might not be maintainable.  But yes, you might be confident 
that SIL 2 is achieved.  

It is important to remember that the uncertainty in our input data is typically not much better than 
half an order of magnitude.  Use only 1 significant figure of precision in expressing calculation results. 
The difference between an RRF of 990 and an RRF of 1100 is not meaningful. 
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2 RULES OF THUMB 

It is easy to estimate the overall probability of failure for a demand safety function by using some 
simple rules of thumb.  Though these estimates are coarse they are useful for quickly identifying 
whether a safety function is likely to meet its failure performance target. 

The rules of thumb are not presented here as an alternative to detailed calculations.  They are 
presented only to give a quick feel for what performance is achievable. 

Final elements (usually) dominate 

In process sector applications with clean service the overall failure rate λ and the PFDAVG is usually 
strongly dominated by the contribution from actuated on-off valves or electrical contactors as the 
final elements.  This is because it is usually not practicable to implement automatic and continuous 
fault diagnostic functions on mechanical and electromechanical final elements.  Without diagnostics 
dangerous faults remain undetected until the function is inspected and tested or until it fails to 
respond to a demand. 

Sensors and logic solvers tend to have much lower dangerous failure rates than final elements because 
they are based on electronic devices.  Electronic components can usually be equipped with automatic 
and continuous fault diagnostic functions.  Most failures can be detected and remedial action can be 
taken to ensure that safe operation is achieved or maintained.   

As a result, the rates of undetected dangerous failures for electronic components are generally at least 
an order of magnitude lower than for mechanical and electromechanical components.   

Where the final elements are tested on an annual basis the final elements can be expected to 
contribute between 70% and 90% of the failure measure.  The sensors typically contribute up to 25% 
of the failures and the logic solver less than 5% of the failures. 

From this we can derive simple rules of thumb.  An explanation of these rules of thumb is included in 
Section 5 below. 

The overall failure rate may be dominated by the sensor failure rates in severe services where reliable 
sensing is difficult.  For example, in minerals processing the sensors can have high failure rates and 
failures can difficult to detect.  Similar rules of thumb could then be applied based on the sensor failure 
rate instead of the final element failure rate. 

Single FE (1oo1) 

For a first approximation with a single final element we can use: 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆 ≈ 1.5 × 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝐹𝐹𝐹𝐹

𝑇𝑇
     

MTBFDU, the mean time between dangerous undetected failures of the final element and T  is the test 
interval.  Both need to be in the same units of measure and are usually measured in years. 

For instance, for an actuated on/off shutdown valve a typical feasible value of 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝐹𝐹𝐹𝐹 is in the range 
40 y to 100 y.  (Refer to the section below on ‘Finding failure rates’.) 

With a single shutdown valve as a final element and with annual testing (T  = 1 y) it is feasible for a 
safety function to achieve RRF in the range 60 to 150.   

The bare minimum 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝐹𝐹𝐹𝐹  of a single final element required to achieve a given RRF can be 
estimated as: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝐹𝐹𝐹𝐹 > 0.6 ×   𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆  ×  𝑇𝑇 



 ©2019 I&E Systems Pty Limited, Perth Western Australia.  Prepared by Mirek Generowicz   Updated July 2019 

To achieve SIL 2 (i.e. RRF > 100) with T  = 1 y requires 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝐹𝐹𝐹𝐹  of at least 60 y.   

This means that the failure performance of the valve will need to be optimised; a 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝐹𝐹𝐹𝐹 of 40 y 
would not be sufficient to achieve SIL 2 with annual testing.   

Electrical contactors can typically achieve 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝐹𝐹𝐹𝐹  in the region of 200 y, so SIL 2 is easily achieved. 

Dual FE (1oo2) 

For a first approximation with two similar (1oo2) final elements we can assume β ≈ 10% and use: 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆 ≈ 15 ×  
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝐹𝐹𝐹𝐹

𝑇𝑇
     

With 1oo2 shutdown valve as final elements and annual testing (T  = 1 y) and 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝐹𝐹𝐹𝐹 in the range 
40 y to 100 y it is feasible for a safety function to achieve RRF in the range 600 to 1,500.   

The bare minimum 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝐹𝐹𝐹𝐹 of dual final elements required to achieve a RRF in a 1oo2 arrangement 
can be estimated as: 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝐹𝐹𝐹𝐹 >  0.6 ×  𝛽𝛽 ×    𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆  ×  𝑇𝑇 

 

and with β around 10%: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝐹𝐹𝐹𝐹 >  6
100�  ×   𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆 ×   𝑇𝑇  

 

To achieve SIL 3 (i.e. RRF > 1,000) with two valves and T  = 1 y requires a 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝐹𝐹𝐹𝐹  of at least 60 y. 

With lower 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝐹𝐹𝐹𝐹 either the failure performance of the valves will need to be improved, or β  will 
need to be reduced below 10%, or else the inspection and test interval will need to be shortened to 
less than a year. 

Diverse FE (1oo2) 

Common cause failures can be minimised by using independent and diverse final elements.  For 
instance, it may be possible to either stop a pump or close a valve to achieve a safe state. 

 

The failure modes and the failure rates for electrical contactors are completely different to failure 
modes and the failure rates of valves. 

The question is sometimes asked: ‘which value of failure rate λDU should be used in the common cause 

failure term 𝛽𝛽. 𝜆𝜆𝐷𝐷𝐷𝐷.𝑇𝑇
2

, the failure rate of the valve, or of the contactor?’. 
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A much better question to ask is: ‘what types of failure could possibly affect the valve and the 
contactor to cause them both to fail dangerously at about the same time?’  and ‘how can we eliminate 
those common cause failures?’ 

With diverse elements it is better to identify exactly what the causes of common cause failures might 
be and what is the expected rate at which those failures will occur.  For instance, with the example 
shown above the common cause failures are limited to factors simultaneously affecting multiple 
output circuits of the logic solver. 

It may be possible to eliminate almost all of the common causes of failure by design, so the probability 
of failure of the final elements would be approximately: 

𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝐹𝐹𝐹𝐹   ≈
�𝜆𝜆𝐷𝐷𝐷𝐷𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 .𝑇𝑇�. (𝜆𝜆𝐷𝐷𝐷𝐷𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.𝑇𝑇)

3
 

Safety functions with completely independent and diverse final elements easily achieve SIL 3 levels of 
risk reduction. 

3 FINDING FAILURE RATES 

There are several useful references for failure rate information: 

• OREDA ‘Offshore and Onshore Reliability Handbook’ 
• exida database incorporated into exSILentia software,  

and tabulated in the exida SERH ‘Safety Equipment Reliability Handbook’  
• SINTEF PDS Data Handbook 

‘Reliability Data for Safety Instrumented Systems’ 
• Users’ own failure rate data 
• Equipment certificates 

The OREDA project provides a useful source of failure rate information gathered over many years by 
a consortium of oil and gas companies.  The OREDA handbooks summarise all failures recorded over 
the normal useful operating life of equipment (i.e. excluding end-of-life failure).  Different editions of 
the handbook cover different periods of time.  The tables can be difficult to interpret but they are 
useful because they indicate the ranges of failure rates that are achieved in operation. 

The failure rate tables published by OREDA show that failure rates recorded by different users typically 
vary over one or two orders of magnitude.  OREDA fits the different reported failure rates into 
probability distributions to estimate the overall mean failure rate and standard deviation for each type 
of equipment and type of failure.   

It is evident from the OREDA tables that the failure rates are not constant across different users and 
different applications.  Some users consistently achieve failure rates at least 10 times lower than other 
users.  The implication here is that it may be feasible for other users to minimise their failure rates 
through best practice in design, operation and maintenance. 

The SINTEF PDS Data Handbook provides a concise summary of failure rates that are typically 
achievable.  It includes OREDA data as an input source. 

The exida failure rate database is based on failure mode analysis.  It provides estimated failure rates 
and failure modes for specific makes and models of many commonly used devices.  The failure rates 
are calculated from typical failure rates of the individual components that make up each device.  The 
exida failure rates are calibrated with field failure data.  The database is regularly updated with current 
failure measurements from users. 
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The exida failure rates are reasonably consistent with the OREDA data and can be taken as a good 
indication of failure rates that are achievable in practice.  It presents failure rates that typically at least 
70% of users are achieving in practice. 

The exida dataset has some advantages over OREDA:  It allows comparison of different designs and 
different makes and models of devices.  It is easier to interpret than OREDA because it presents failure 
rate data in a more consistent form.   

One concern with exida failure rates is that they are presented with 3 or 4 significant figures of 
precision, implying that the rates are fixed and constant.  In practice the uncertainty in these rates is 
as wide as in the OREDA data.  The variation in the rates that can be achieved in operation spans at 
least an order of magnitude.   

Failure rates on SIL certificates need to be treated with caution if the quoted failure rates are 
significantly lower than failure rates in the industry-wide databases.  Certifying bodies may specifically 
exclude systematic failures when evaluating failure rate.  Such low failure rates cannot be easily 
achieved in practice. 

4 SPURIOUS TRIP RATE EQUATIONS 

The ISA technical report ISA-TR84.00.02-2002 - Part 2 provides equations for estimating spurious trip 
rates.  The derivation of the equations is explained below. 

‘1ooN’ Spurious Trip Rate 

Put simply, the spurious trip rate (STR) for a single device is the same as its safe failure rate, λS.  
Spurious trip rates are usually measured in failures per year. 

If detected dangerous failures also cause a trip condition the rate of dangerous detected failures 
should be added to give STR = λS + λDD.   

Strictly speaking we should use the rate of safe failures that are undetected (λSU) and will cause a trip 
condition.  In logic solver voting arrangements such as 1oo2D some safe failures can be detected by 
diagnostic functions.  If a safe failure is detected the voting is automatically adapted rather than 
causing a trip.  The term ‘safe detected’ (and the rate λSD) is only used in architectures with adaptive 
voting.  It does not apply to sensors or final elements.  For simplicity in the following explanation the 
term λS is used. 

With ‘1ooN’ voting the rate of spurious trips is simply proportional to the number of devices.  The trip 
rate with 2 devices is 2 x the trip rate for a single device.  

1oo2  STR  = 2.λS 

1oo3  STR  = 3.λS 

1ooN  STR  = N.λS 
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‘2oo2’ Spurious Trip Rate - simplified 

With ‘2oo2’ voting 2 coincident safe failures are needed before a spurious trip occurs.   

The spurious trip occurs only if a second failure occurs during the time at risk, the period in which the 
first failure is being repaired: 

 

As there are 2 devices the rate of one safe failure (1oo2) is 2 x λS.  The rate of the one remaining device 

failing safely (1oo1) is λS.  The probability that the second failure happens during the time at risk from 
the first failure is proportional to the ‘fractional dead time’, FDT = MTTR/MTBFS, and can be written 
as: 

FDT = MTTR.2.λS 

The rate at which a coincident failure of both devices can be expected is therefore:   

STR = (MTTR.2.λS).λS 

With 2oo3 voting, the first failure is any 1 out of the 3.  After the first failure there are then 2 
functioning devices left in service, essentially in a 1 out of 2 arrangement.  Either one of those 2 failing 
will cause a trip.   

The time at risk is the repair period after 1 failure out of 3 devices (MTTR . 3 . λS).   

The rate of another 1 of the 2 remaining devices failing is 2.λS.  

The spurious trip rate is therefore the rate of the coincident failure: 

STR = (MTTR.3.λS).(2.λS) 

 

With 2ooN voting, after the first failure there are (N-1) functioning devices left in service, in a 1oo(N-1) 
arrangement.  Any one of those failing during the time at risk will cause a trip.   

At any point in time the probability that one failure has already occurred is MTTR . N . λS (the time at 
risk, using the 1ooN equation for failure rate).  After that first failure there are N-1 in service.  The rate 
with which we can expect a second failure is (N-1) . λS,  and so the spurious trip rate is: 

STR = (MTTR.N.λS).((N-1).λS) 

 

For example the equation for 2oo4 voting is 

STR = (MTTR.4.λS).(3.λS) 

= 12.MTTR.λS2 
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‘2ooN’ Spurious Trip Rate - complete 

The complete form of the equation adds the λDD term (assuming that detected failures lead to a trip) 
and a common cause failure term: 

STR = [MTTR.N.(λS + λDD)].[(N-1).(λS + λDD)] + [β .(λS + λDD)] 

The common cause failure term must always be added because usually (β . λS) >> λS2. 

‘3oo3’ Spurious Trip Rate 

With 3oo3 voting the time at risk is the fraction of time during which the first 2 failed devices are both 
out of service:   

FDT = MTTR.[(MTTR.3.λS).(2.λS)] 

The spurious trip rate is the failure rate of the 3rd device (only 1 left) x the FDT: 

STR = MTTR.[(MTTR.3.λS).(2.λS)].λS 

‘3ooN’ Spurious Trip Rate 

With 3ooN voting after the first 2 failures there are (N-2) devices to choose from for the 3rd trip.  Any 
one of those failing safely will cause the trip.  The equation becomes: 

STR = MTTR.[(MTTR.N.λS) . ((N-1).λS)].(N-2).λS 

= MTTR2 . λS2 .N .(N-1).(N-2) 

= MTTR2 . λS3 .N! / (N-3)! 

For example the equation for 3oo4 voting is 

STR = (MTTR2 .λS3). 4! / 1! 

= 24.MTTR2 . λS3 

 

‘MooN’ Spurious Trip Rate 

With MooN voting the Mth failure cause a trip.  The fractional dead time in which M-1 devices have 
failed into a trip state is: 

FDT = MTTR(M-1) . λS(M-1) . N.(N-1).(N-2) …..  .(N-(M-2))  

After the first M-1 failures there are then (N-(M-1)) devices to choose from for the Mth trip.  Any one 
of those failing safely will cause the trip.  The equation becomes 

STR = [MTTR(M-1) .λS(M-1) .N.(N-1).(N-2) …..  .(N-(M-2))].(N-(M-1)).λS 

The series of multipliers can be neatly written using the factorial form: 

STR = MTTR(M-1) .λSM .N! / (N-M)! 

‘MooN’ Spurious Trip Rate – complete equation 

The complete form of the equation adds the λDD term and the common cause failure term: 

STR = [MTTR(M-1) .(λS + λDD)M .N! / (N-M)!] + [β.(λS + λDD)] 
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5 FAILURE RATE EQUATIONS FOR CONTINUOUS MODE 

Continuous mode safety functions are those where a dangerous undetected failure directly causes a 
hazard to occur.  They are characterised by failure rate instead of by a probability of failure on demand.   

In these estimates it is assumed that some appropriate response can be made to dangerous failures 
that are detected.  

Estimating the overall dangerous failure rate of different SIF architectures follows a process that is 
similar to estimating spurious trip rate. 

With ‘NooN’ voting all of the devices are required to be in service for continued safe operation. Any 
one device failing will cause a hazard.  The overall rate of dangerous undetected failures is simply 
proportional to the number of devices.  The failure rate with 2 devices is 2 x the failure rate for a single 
device.  

2oo2  λDU  = 2.λDU 

3oo3  λDU  = 3.λDU 

NooN  λDU  = N.λDU 

‘1oo2’ Failure Rate 

With ‘1oo2’ voting 2 coincident dangerous failures are needed before a dangerous loss of function 
occurs.  The hazard occurs only if a second failure occurs during the time at risk, the period in which 
the first failure is being repaired: 

 

As there are 2 devices the rate of the first dangerous failure (1oo2) is 2 x λD.  The rate at which the 

one remaining device fails dangerously without being detected (1oo1) is λDU.  We assume that if the 
failure can be detected by diagnostics the system can be shut down safely. 

The probability that the second failure happens during the time at risk from the first failure is 
proportional to the ‘fractional dead time’, FDT = 2 x MDT/MTBFD  (multiplying by 2 for 2 devices) and 
this can be written as: 

FDT = 2.MDT. λD 

The rate λG (‘G’ for group) at which we can expect a coincident failure of both devices in a group voted 
1oo2 is therefore:   

λG = 2.MDT.λD.λDU + β.λDU 

The mean down time MDT depends on whether the first failure is detected or undetected.   

If the failure is detected through continuous diagnostics we assume it will be repaired within the mean 
repair time, MRT. 

If the failure is not detected through continuous diagnostics we assume that the average time to 
restore it to service will be approximately half the periodic test interval T. 
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The MDT can be estimated from the proportion of dangerous failures that remain undetected by 
continuous diagnostics: 

𝑀𝑀𝑀𝑀𝑀𝑀 =  
𝜆𝜆𝐷𝐷𝐷𝐷
𝜆𝜆𝐷𝐷

�
𝑇𝑇
2

+ 𝑀𝑀𝑀𝑀𝑀𝑀� +
𝜆𝜆𝐷𝐷𝐷𝐷
𝜆𝜆𝐷𝐷

(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀)  

𝑀𝑀𝑀𝑀𝑀𝑀 ≈  
𝜆𝜆𝐷𝐷𝐷𝐷
𝜆𝜆𝐷𝐷

.
𝑇𝑇
2

  +   
𝜆𝜆𝐷𝐷𝐷𝐷
𝜆𝜆𝐷𝐷

.𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 

In this case the MTTR term can be significant because usually λDD >> λDU. 

We can often achieve a high diagnostic coverage in continuous mode functions because the functions 
take continuous action that can be easily monitored.   

With 2oo3 voting, the first failure is any 1 out of the 3.  After the first failure there are then 2 
functioning devices left in service, essentially in a 1 out of 2 arrangement.  Either one of those 2 failing 
will cause a trip.   

The time at risk is the repair period after 1 failure out of 3 devices 3 x MDT x λD.   

The rate of another 1 of the 2 remaining devices failing without being detected is 2 x λDU.  

The failure rate of the group as a whole is therefore the rate of the coincident failure: 

λG = 3.MDT.λD.(2.λDU) + β.λDU 

λG = 6.MDT.λD.λDU + β.λDU 

 

‘MooN’ Failure Rate – complete equation 

Deriving the MooN forms is more complicated than for spurious trip because the T/2 and MTTR terms 
need to be treated separately when multiple coincident failures are considered. 

For a detailed explanation refer to Smith, D. J. ‘Reliability, Maintainability and Risk’, 9th Ed. 
Butterworth Heinemann. 2017. 

For revealed failures the general form is: 

λG = N! / [(N-M)!.(M-1)!] . (λ(N-M+1) .MDT(N-M)), where MDT is estimated from MTTR. 

For unrevealed failures the general form is: 

λG = N! / [(N-M+1)!.(M-1)!] . (λ(N-M+1) .MDT(N-M)), where MDT is estimated from T. 

As always, the common cause failure term must be added: 

 + β.λDU 

The overall failure rate of any voted group will usually be strongly dominated by the common cause 
failure term.  In practice the two λ(N-M+1) .MDT(N-M) terms are negligible. 
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6 MORE DETAIL: DERIVING THE RULES OF THUMB 
Single FE (1oo1) 

Calculations of failure probability for demand functions are based on the coarse assumption that 
dangerous undetected failures occur at a constant rate, λDU.   

In any set of similar devices undetected failures would then accumulate exponentially.  Once any 
individual device fails it remains failed until its failure is revealed by either inspection, a test or a 
demand on the function. 

The probability of failure of any individual device in a given set of devices is proportional to the number 
of failures that have been allowed to accumulate in the time t since the last full test and inspection: 

𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) = � λDU
𝑡𝑡

0
. 𝑒𝑒−λ𝐷𝐷𝐷𝐷.𝜏𝜏.𝑑𝑑𝑑𝑑 =  1 −  𝑒𝑒−λ𝐷𝐷𝐷𝐷.𝑡𝑡 

The exponential curve is almost linear for PFD < 0.2.  Safety functions always have PFDAVG < 0.1, so it 
is always valid to use a linear approximation for the curve.  There is no benefit at all in making a more 
precise calculation because the initial assumption of constant failure rate is coarse.  Any additional 
precision would be meaningless because in practice the failure rate is a variable rather than a constant. 

The average probability of failure PFDAVG of a single final element can then be approximated by: 

𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝐹𝐹𝐹𝐹   ≈  
𝜆𝜆𝐷𝐷𝐷𝐷.𝑇𝑇

2
 

where T  is the test interval.   

Failures that are detected make a smaller contribution to the probability of failure because they can 
be repaired promptly or the system can be taken out of service.  The contribution from the rate of 
detected dangerous failures λDD is negligible. 

A more convenient way of expressing the approximation is in terms of risk reduction factor RRF  and 
MTBFDU, the mean time between dangerous undetected failures of the final element. 

𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝐹𝐹 ≈  2 ×
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝐹𝐹𝐹𝐹

𝑇𝑇
 

RRF is the reciprocal of PFDAVG and MTBFDU is the reciprocal of λDU.   

The overall RRF of the safety function with a single final element is typically in the range: 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆 ≈ 0.7 × 𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝐹𝐹    to  0.9 ×  𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝐹𝐹    

 𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆 ≈ 1.4 ×  
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝐹𝐹𝐹𝐹

𝑇𝑇
   to  1.8 ×  

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝐹𝐹𝐹𝐹

𝑇𝑇
   

For a first approximation use: 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆 ≈ 1.5 × 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝐹𝐹𝐹𝐹

𝑇𝑇
     

For instance, a typical feasible value of 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝐹𝐹𝐹𝐹 for an actuated on/off shutdown valve is in the range 
40 y to 100 y.   

With a single shutdown valve as a final element and with annual testing (T  = 1 y) it is feasible for a 
safety function to achieve RRF in the range 60 to 150.   
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The bare minimum 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝐹𝐹𝐹𝐹  of a single final element required to achieve a given RRF can be 
estimated as: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝐹𝐹𝐹𝐹 > 0.6 ×   𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆  ×  𝑇𝑇 

Dual FE (1oo2) 

The PFDAVG of a pair of similar final elements in a 1oo2 arrangement can be approximated by: 

𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝐹𝐹𝐹𝐹   ≈  (1 − 𝛽𝛽).
(𝜆𝜆𝐷𝐷𝐷𝐷.𝑇𝑇)2

3
+ 𝛽𝛽.

𝜆𝜆𝐷𝐷𝐷𝐷.𝑇𝑇
2

 

The last term in this equation applies the β factor to represent the proportion of failures that have a 
common cause.  The common cause term will dominate the PFDAVG unless the following is true: 

𝛽𝛽 ≪  𝜆𝜆𝐷𝐷𝐷𝐷.𝑇𝑇 

If the test interval T  = 1 y and λDU = 0.02 pa  (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝐹𝐹𝐹𝐹 = 50 y), then the common cause failure term 
will be greater than the first term unless β < 2%.   

A value as low as 2% is difficult to achieve with similar final elements.  A recent SINTEF study (Report 
A26922) showed that β  is typically in the range 12% to 15%.  With β ≥ 5% we can make the further 
approximation: 

𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝐹𝐹𝐹𝐹   ≈ 1.1 ×  𝛽𝛽.
𝜆𝜆𝐷𝐷𝐷𝐷.𝑇𝑇

2
 

and so 

𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝐹𝐹 ≈  1.8 ×
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝐹𝐹𝐹𝐹

𝛽𝛽.𝑇𝑇
 

For a rule of thumb the common cause factor β can be assumed to be around 10%. 

𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝐹𝐹 ≈  18 ×
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝐹𝐹𝐹𝐹

𝑇𝑇
 

The overall RRF of the safety function with 1oo2 final elements is typically in the range: 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆 ≈ 0.7 × 𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝐹𝐹    to  0.9 ×  𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝐹𝐹    

so then 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆 ≈ 12 ×  
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝐹𝐹𝐹𝐹

𝑇𝑇
   to  16 ×  

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝐹𝐹𝐹𝐹

𝑇𝑇
   

or roughly,  

 𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆 ≈ 15 ×  
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝐹𝐹𝐹𝐹

𝑇𝑇
     

With 1oo2 shutdown valve as final elements and annual testing (T  = 1 y) and 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝐹𝐹𝐹𝐹 in the range 
40 y to 100 y it is feasible for a safety function to achieve RRF in the range 600 to 1,500.   

The bare minimum 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝐹𝐹𝐹𝐹 of dual final elements required to achieve a RRF in a 1oo2 arrangement 
can be estimated as: 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝐹𝐹𝐹𝐹 >  0.6 ×  𝛽𝛽 ×    𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆  ×  𝑇𝑇 
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and with β around 10%: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝐹𝐹𝐹𝐹 >  6
100�  ×   𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆 ×   𝑇𝑇 

 

To achieve SIL 3 (i.e. RRF > 1,000) with two valves and T  = 1 y requires 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝐹𝐹𝐹𝐹  of at least 60 y. 

Either the failure performance of the valves will need to be optimised, or β  will need to be reduced 
below 10%, or else the inspection and test interval will need to be shortened to less than a year. 
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