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Do engineers really 
need calculators to 
estimate probability of 
safety function failure?
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IEC 61508-6 makes it look complicated

Even something as simple as 1oo2 voting:



Overview

This presentation is based on generic MooN models developed in 
association with The 61508 Association (Working Group 15)
The main objective was to model the effect of staggered test intervals
The working group developed 
comprehensive MooN models:

We went all the way down the rabbit hole
…and out again



Overview

We discovered how the models can be simplified
Synchronised testing:

Staggered testing:

…but these models are never more accurate 
than very simple approximations such as
                                              
                                            or



In this presentation

Models for MooN independent channels covering: 
1. Continuous mode and high demand mode
2. Synchronised testing
3. Proof test coverage
4. Evenly staggered testing
5. Examples
Conclusion: Complex mathematics is not needed



Validating the simplified models

Results from the simplified MooN models were compared with:
• Longhand manual calculations
• Recursive algorithms coded in VBA 
• Fully expanded spreadsheet models
• Discrete time-slice spreadsheet models
• Simple approximations
The evaluation covered all MooN combinations with N up to 7
The simplified models agreed with other calculations to within 1%
The approximation                                               is within 30%



The models are based on failure rates
Derived from IEC 61508-6 and SINTEF PDS Method Handbook
The symbol λ  represents failure rate, estimated from frequency: 
 n failures counted over time τ   
Units may be per hour, per 109 hours, or per annum
Future performance may vary significantly from past performance
Essential to start with IEC 60812 Analysis techniques for system 
reliability – Procedure for failure mode and effects analysis (FMEA)
Failures always need to be considered in context
Whether a failure is safe or dangerous depends on the application

n/τ is the historical frequency



The disclaimer: Expect uncertainty and variability

• Effects of failures may be uncertain
• When does degraded operation become a dangerous failure?
• Devices usually have multiple modes of failure
• Failure frequencies are always variable, depending on:

– Environmental factors
– Human factors
– Systematic factors
– Equipment condition

• Expect failure rates to vary over at least an order of magnitude  
i.e. variation is usually wider than between 0.3 λ and 3 λ 

(refer to IEC 61709)



No precision!

Don’t expect (or believe) any answers with 3 significant figures

Even 1 significant figure of precision is optimistic

Failure rate and probability estimates are never better than +/- 50%

An estimate within  +/- 30% is close enough

Risk estimates can never be better than within an order of magnitude



Continuous mode and high demand mode functions

The overall dangerous failure rate of a safety function can be estimated as

Detected dangerous failures may be excluded in high demand mode 
if an automatic fault reaction puts the equipment into a safe state

> 99%



Continuous mode and high demand mode functions

The overall dangerous failure rate of a safety function can be estimated as

Detected dangerous failures may be excluded in high demand mode 
if an automatic fault reaction puts the equipment into a safe state

> 99%



β depends on M and N

Typical values of β for sensors and final elements:

β models are rule based, estimated values are always uncertain
SINTEF Report A26922 (2015) reviewed operational experience:
β1oo2 for sensors and valves is typically in the range 0.12 to 0.15

β is reduced with higher N-M, but 
increases with higher M

These values are derived from 
IEC 61508-6 Table D.5,  
different models give different values



The number of different ways that N-M+1 failures 
can occur in N channels

Low demand: basic ‘average before product’ model

The probability of N-M+1 concurrent dangerous failures in N 
completely independent channels can be approximated by raising 
the average PFD of a single channel to the power N-M+1, 

Common cause failures are added to complete the model:



Low demand mode with synchronised channel tests

The average probability with synchronised testing is higher than 
estimated by the basic ‘average before product’ model
The (PFD)N-M+1  product needs to be expanded before averaging 
The instantaneous probability of N-M+1 failures can be estimated as:

The expanded product is integrated over time to estimate the average
This is known as the ‘product before average’ model 



Detailed low demand model with synchronised testing

This model includes the averages of
product terms for N-M ≤ 2

It seems complicated, but it can be 
modelled in a spreadsheet
…unless N-M > 2

The number of terms in the product 
increases with N-M



Simplified model for synchronised testing

A correction factor can be included in the basic ‘average before product’ 
model to give the same results as the fully expanded model for 
synchronised tests

The model distinguishes between:
– Detected failures revealed by diagnostics
– Undetected failures revealed by inspection and test at intervals T1 
– The remaining undetected failures revealed at intervals T2



The simpler way to model limited proof test coverage

Limited test coverage increases the average time to reveal 
failures that remain undetected by diagnostics 
 

Interval between tests with full 
coverage (or between demands)

Interval between tests 
with partial coverage



Partial stroke testing example

Annual partial stroke testing can typically achieve 60% test coverage
A full test might be carried at 6-yearly intervals: 

PTC = 60%                                                 T1 = 1 y              T2 = 6 y

Limited test coverage typically increases PFD  by a factor of 2 or 3



Simplified model with limited proof test coverage

Where
This model is mathematically identical to the model 
based on (λDU - λDN).T1 and  λDN.T2 



Correction factor example – 1oo2 architecture

The basic ‘average before product’ model gives:

The ‘product before average’ model for synchronised tests gives:

The correction factor is:



The corrected model was validated for all MooN

The simplified model is within +/- 1% of the expanded model
Analysis using these models showed that the common cause failures 
almost always account for > 75% of the PFD
Undetected failures dominate unless diagnostic coverage > 95% 

> 75%

< 25%



Varying diagnostic coverage
If diagnostic coverage ≤ 95%,  then



% contributions to 𝑃𝑃𝐹𝐹𝐷𝐷1oo1 from   ⁄𝜆𝜆𝐷𝐷𝐷𝐷.𝑇𝑇 2   and  𝜆𝜆𝐷𝐷𝐷𝐷.𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

T = 1 y and 
MTTR = 0.01 y

Undetected faults dominate unless DC > 95 %



Simple approximations are just as accurate

If diagnostic coverage > 95% , then

With diagnostic coverage ≤ 95%, 

and 

So….                                                                 …but within what limits?



Even with M > 2

For any MooN:        PFD ≈ K. β.λDU.Τ

For most common 
applications K is 
between 0.5 and 0.67
K increases with T, but
2oo3 and higher order 
architectures usually have 
enough diagnostic coverage 
to achieve λDU < 0.01 pa
T > 3 y might be used
if λDU < 0.01 pa, so is the 
approximation still valid?

K

Typical range of λDU Final elementsSensors



What about logic solvers with T = 10 years?

Logic solvers may have
 T > 10 years 

but usually have DC  > 95% 
and  λDU < 0.001 pa
(about 100 FITS or 10-7 h-1)

K

Logic solvers    (assuming βINT = 0.05) 



Logic solvers usually have DC > 90% and βINT < 0.05 

For logic solvers we could use

Is this realistic, or purely academic?  What will the fault reaction be?

The approximation                                               is still close enough 

Logic solver PFD is typically in the order of 10-6  to 10-5

Precise estimates cannot be expected  



Diverse channels may have βINT < 0.02

PFD < β.λDU.Τ is usually 
valid for βINT > 0.02

βINT < 0.02 may be needed 
for RRF ≥ 10,000 

Carry out detailed analysis 
with FMEA for β INT < 0.02 

K

could be used with β INT < 0.02 



Precision can never be justified

• The validity of β models is questionable for diverse channels 
• Uncertainty in the β for any MooN is typically +/- 50%
• All failure rates usually vary more than between 0.3 λ and 3 λ 
• Failure rates > 0.01 pa (MTBF 100 years) are mostly dependent on 
service conditions and human actions (systematic factors); 
even wider variation can be expected

• Detailed models are not more accurate than simple approximations



Perfectly staggered testing reduces PFD

Refer to The 61508 Association paper
T6A 042 for detailed analysis
For 1oo2 architecture
                                instead of

Correction factors StM,N for different N and M, based on T6A 042

         (note that T6A 042 uses different definitions of M and N) 



Low-demand mode with staggered tests

Systems with evenly staggered testing may be modelled in detail by:

where
The main benefit of staggered testing is in reducing the average time to 
reveal undetected common cause failures
This simple approximation is still valid, and just as accurate:



Summary  - for any low demand application

Simple approximations can be used to estimate failure probability 
for any low-demand mode safety functions 
for MooN

With diagnostic coverage >95 % we could use:
for MooN

for NooN

for NooN

(zero fault tolerance)

… but only if we are sure that normal operation will continue for MTTR 



Risk reduction factor estimates

Reciprocal formulas can be used to quickly estimate RRF 
from the overall MTBFDU  of a single channel:

For NooN                                         and for MooN

For example, with βint = 0.1 and Τ = 1 y:
MTBFDU  RRF  with 1oo1 RRF  with 1oo2 RRF  with 1oo3
  30 y      60      500     1,000
100 y    200   1,500     3,000
300 y    600   5,000   10,000



Low demand example: Typical values for MTBF and λ
What PFD can be achieved?
Refer to silsafedata.com for failure rates that are feasible
• Sensors: 

MTBFDU range 100 to 300 years, 𝜆𝜆𝐷𝐷𝐷𝐷 ≈ 0.003 to 0.01 pa
MTBFDD range 30 to 100 years, 𝜆𝜆𝐷𝐷𝐷𝐷 ≈ 0.01 to 0.03 pa

• Actuated valve assemblies: 
MTBFDU range 30 to 100 years, 𝜆𝜆𝐷𝐷𝐷𝐷 ≈ 0.01 to 0.03 pa
usually no diagnostics, 𝜆𝜆𝐷𝐷𝐷𝐷= 0
 

• Contactors or relays: 
MTBFDU range 100 to 300 years, 𝜆𝜆𝐷𝐷𝐷𝐷 ≈ 0.003 to 0.01 pa
usually no diagnostics, 𝜆𝜆𝐷𝐷𝐷𝐷= 0

Assume 𝝀𝝀𝑫𝑫𝑫𝑫 ≈ 0.02 pa



Example dual channel SIF with 1oo2 voting

Sensor PFD ≈ 
                     ≈
Valve PFD    ≈ 
                     ≈
SIF PFD       ≈ 0.0002 + 0.0011 ≈   0.0013
RRF ≈  750,  SIL 2 range
Obviously: 

(0.003 pa x 1 y)2 / 3 + 0.1 x 0.003 pa x 1 y / 2 + 0.1 x 0.01 pa x 0.01 y
0.00003 + 0.00015 + 0.00001    ≈   0.00019 

𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴 ≈
𝜆𝜆𝐷𝐷𝐷𝐷

2.𝑇𝑇2

3
+
𝛽𝛽. 𝜆𝜆𝐷𝐷𝐷𝐷.𝑇𝑇

2

(0.02 pa x 1 y)2 / 3 + 0.1 x 0.02 pa x 1 y / 2

0.00013 + 0.001    ≈   0.0011 



1oo2 voting example with simple approximation

Sensor PFD ≈ 
                     ≈
Valve PFD    ≈ 
                     ≈
SIF PFD       ≈ 0.0002 + 0.0011 ≈   0.0013
RRF ≈  650   (compared with 750 from the detailed estimate)
The 15% difference is academic given the uncertainty in failure rates

(0.003 pa x 1 y)2 / 3 + 0.1 x 0.003 pa x 1 y / 2 + 0.1 x 0.01 pa x 0.01 y
0.00003 + 0.00015 + 0.00001    ≈   0.00019 

𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴 ≈
𝜆𝜆𝐷𝐷𝐷𝐷

2.𝑇𝑇2

3
+
𝛽𝛽. 𝜆𝜆𝐷𝐷𝐷𝐷.𝑇𝑇

2
+ 𝛽𝛽𝐷𝐷 . 𝜆𝜆𝐷𝐷𝐷𝐷.𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

(0.02 pa x 1 y)2 / 3 + 0.1 x 0.02 pa x 1 y / 2
0.00013 + 0.001    ≈   0.0011 

2/3 x 0.1 x 0.003 pa x 1 y
0.0002
2/3 x 0.1 x 0.02 pa x 1 y
0.0013

0.0002 + 0.0013 ≈ 0.0015



Using the reciprocal form:

λDU  ≈ 0.003 pa + 0.02 pa
MTBFDU ≈ 1/0.023 ≈ 44 y
RRF ≈  3/2 x 44 y /(0.1 x 1) ≈ 650



Continuous mode and high demand mode functions

For MooN

For NooN

Detected failures may be excluded if there is an appropriate fault reaction



Conclusions

Safety function performance is always variable; it depends primarily on: 
• The rate of undetected failures 
• Time taken to reveal undetected failures
• Common cause failure fraction

Simple approximations are just as accurate as the fully detailed models



Conclusions

Failure probability can be reduced by orders of magnitude through:
– Selection of equipment suitable for the service and environment
– Reliability centered maintenance
– Automatic diagnostics
– Proof test and inspection 
– Staggered testing
– Diversity between voted channels

The ‘informative’ formulas in IEC 61508-6 need to be clarified in Ed. 3
…and no, we should not usually need a calculator

Conclusions:  
FMEA is useful
Complicated mathematics 
is not necessary
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